HedgeFund

Risk.net Podcast:  NYU’s Kolm On Transaction Costs And Machine Learning  August 26, 2021

August 2021 - Hedge Fund

To access the podcast click here.


Most forms of post-trade transaction cost analysis only consider the price impact of completed orders. But ignoring partially filled orders – which are all too common when trading – produces a distorted measure of execution quality. “Depending on what methodologies are used, you might be off by 20% to 30%, relative to the true transaction cost,” says Petter Kolm, professor of finance and director of the Mathematics in Finance master’s program at NYU’s Courant Institute of Mathematical Sciences, and our guest for this episode of Quantcast. Kolm’s latest paper with Nicholas Westray, a visiting researcher in financial machine learning at the Courant Institute, explores the so-called clean-up costs of trades, which they define as the opportunity cost attributed to the part of the order that is unfilled.


Most trading firms use ad hoc techniques to measure the cost of partial fills. The paper proposes a streamlined way to quantify clean-up costs that can be consistently applied to different trading strategies. The setup assumes the market behaves like a propagator model. This allows for the transaction costs of partially filled orders to be modelled as if they were fully executed, capturing the effects on drift of the security as well as the market impact of the trade.


In this podcast, Kolm also discusses his other research interests, including the applications of machine learning and its various branches in finance, one of which is natural language processing (NLP). Kolm and his team have used NLP to gauge investor sentiment on individual stocks by harvesting signals from financial news. Their research has shown that there is indeed a connection between sentiment and the successive behaviour of the stock.


Kolm is also working on various applications of reinforcement learning, which is becoming increasingly popular. He is, however, more cautious than other quants about it application in finance. While the technique is promising, he warns that prior applications such as the Alpha Go system developed by Google’s Deepmind benefited from a large and stable database for training. In finance, quants only have a limited history of prices to work with. “Reinforcement learning has had a bit of hype – all the cool kids are doing it these days, but I think people are starting to understand and separate hype from reality,” he says.


Kolm says his future projects will focus on the application of deep learning and reinforcement learning to optimal execution and the trading of American options, as well as the use of NLP to generate trading signals.


To access the podcast click here.




Send The Author A Message
Log In for More
Access Over 250K+ Industry Headlines, Posts and Updates

Subscribe to our FREE DAILY newsletter

Please Select Industry Primary Role*
Not a member yet?

Join AlphaMaven

The Premier Alternative Investment
Research and Due Diligence Platform for Investors

Free Membership for Qualified Investors and Industry Participants
  • Easily Customize Content to Match Your Investment Preferences
  • Breaking News 24/7/365
  • Daily Newsletter & Indices
  • Alternative Investment Listings & LeaderBoards
  • Industry Research, Due Diligence, Videos, Webinars, Events, Press Releases, Market Commentary, Newsletters, Fact Sheets, Presentations, Investment Mandates, Video PitchBooks & More!
  • Company Directory
  • Contact Directory
  • Member Posts & Publications
  • Alpha University Video Series to Expand Investor Knowledge
  • AUM Accelerator Program (designed for investment managers)
  • Over 450K+ Industry Headlines, Posts and Updates
ALL ALPHAMAVEN CONTENT IS FOR INFORMATIONAL PURPOSES ONLY. CONTENT POSTED BY MEMBERS DOES NOT NECESSARILY REFLECT THE OPINION OR BELIEFS OF ALPHAMAVEN AND HAS NOT ALWAYS BEEN INDEPENDENTLY VERIFIED BY ALPHAMAVEN. PAST PERFORMANCE IS NOT INDICATIVE OF FUTURE RESULTS. THIS IS NOT A SOLICITATION FOR INVESTMENT. THE MATERIAL PROVIDED HEREIN IS FOR INFORMATIONAL PURPOSES ONLY. IT DOES NOT CONSTITUTE AN OFFER TO SELL OR A SOLICITATION OF AN OFFER TO BUY ANY INTERESTS OF ANY FUND OR ANY OTHER SECURITIES. ANY SUCH OFFERINGS CAN BE MADE ONLY IN ACCORDANCE WITH THE TERMS AND CONDITIONS SET FORTH IN THE INVESTMENT'S PRIVATE PLACEMENT MEMORANDUM. PRIOR TO INVESTING, INVESTORS ARE STRONGLY URGED TO REVIEW CAREFULLY THE PRIVATE PLACEMENT MEMORANDUM (INCLUDING THE RISK FACTORS DESCRIBED THEREIN), THE LIMITED PARTNERSHIP AGREEMENT AND THE SUBSCRIPTION DOCUMENTS, TO ASK SUCH QUESTIONS OF THE INVESTMENT MANAGER AS THEY DEEM APPROPRIATE, AND TO DISCUSS ANY PROSPECTIVE INVESTMENT IN THE FUND WITH THEIR LEGAL AND TAX ADVISERS IN ORDER TO MAKE AN INDEPENDENT DETERMINATION OF THE SUITABILITY AND CONSEQUENCES OF AN INVESTMENT.